Định lí Ta-Lét và các ứng dụng
Tài liệu là các ứng dụng của định lí ta lét vào giải toán hình học lớp 8. Qua tài liệu học sinh có thể giải các bài toán về quan hệ song song, chính minh các tính chất hình học của tam giác.
- Định lí Ta-lét:
* §Þnh lÝ Ta-lÐt:
* Hệ qu¶: MN // BC
- Bài tập áp dụng:
- Bài 1:
Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua B song song với AD cắt AC ở G
- a) chứng minh: EG // CD
- b) Giả sử AB // CD, chứng minh rằng AB2 = CD. EG
Giải
Gọi O là giao điểm của AC và BD
- a) Vì AE // BC (1)
BG // AC (2)
Nhân (1) với (2) vế theo vế ta có: EG // CD
- b) Khi AB // CD thì EG // AB // CD, BG // AD nên
Bài 2:
Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của Ac và BF.
Chứng minh rằng:
- a) AH = AK
- b) AH2 = BH. CK
Giải
Đặt AB = c, AC = b.
BD // AC (cùng vuông góc với AB)
nên
Hay (1)
AB // CF (cùng vuông góc với AC) nên
Hay (2)
Từ (1) và (2) suy ra: AH = AK
- b) Từ và suy ra (Vì AH = AK)
AH2 = BH . KC
- Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G. Chứng minh rằng:
- a) AE2 = EK. EG
- b)
- c) Khi đường thẳng a thay đổi vị trí nhưng vẫn qua A thì tích BK. DG có giá trị không đổi
Giải
- a) Vì ABCD là hình bình hành và K BC nên
AD // BK, theo hệ quả của định lí Ta-lét ta có:
- b) Ta có: ; nên
(đpcm)
- c) Ta có: (1); (2)
Nhân (1) với (2) vế theo vế ta có: không đổi (Vì a = AB; b = AD là độ dài hai cạnh của hình bình hành ABCD không đổi)
- Bài 4:
Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong các cạnh AB, BC, CD, DA theo tỉ số 1:2. Chứng minh rằng:
- a) EG = FH
- b) EG vuông góc với FH
Giải
Gọi M, N theo thứ tự là trung điểm của CF, DG
Ta có CM = CF = BC
EM // AC (1)
Tương tự, ta có: NF // BD (2)
mà AC = BD (3)
Từ (1), (2), (3) suy ra : EM = NF (a)
Tương tự như trên ta có: MG // BD, NH // AC và MG = NH = AC (b)
Mặt khác EM // AC; MG // BD Và AC BD EM MG (4)
Tương tự, ta có: (5)
Từ (4) và (5) suy ra (c)
Từ (a), (b), (c) suy ra EMG = FNH (c.g.c) EG = FH
- b) Gọi giao điểm của EG và FH là O; của EM và FH là P; của EM và FN là Q thì
mà (đối đỉnh), (EMG = FNH)
Suy ra EO OP EG FH
- Bài 5:
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC, cắt AC tại M và AB tại K, Từ C vẽ đường thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ đường thẳng song song với AC, cắt BC tại P. Chứng minh rằng
- a) MP // AB
- b) Ba đường thẳng MP, CF, DB đồng quy
Giải
- a) EP // AC (1)
AK // CD (2)
các tứ giác AFCD, DCBK la các hình bình hành nên
AF = DC, FB = AK (3)
Kết hợp (1), (2) và (3) ta có MP // AB (Định lí Ta-lét đảo) (4)
- b) Gọi I là giao điểm của BD và CF, ta có: =
Mà (Do FB // DC) IP // DC // AB (5)
Từ (4) và (5) suy ra : qua P có hai đường thẳng IP, PM cùng song song với AB // DC nên theo tiên đề Ơclít thì ba điểm P, I, M thẳng hang hay MP đi qua giao điểm của CF và DB hay ba đường thẳng MP, CF, DB đồng quy
- Bài 6:
Cho ABC có BC < BA. Qua C kẻ đường thẳng vuông goác với tia phân giác BE của ; đường thẳng này cắt BE tại F và cắt trung tuyến BD tại G. Chứng minh rằng đoạn thẳng EG bị đoạn thẳng DF chia làm hai phần bằng nhau
Giải
Gọi K là giao điểm của CF và AB; M là giao điểm của DF và BC
KBC có BF vừa là phân giác vừa là đường cao nên KBC cân tại B BK = BC và FC = FK
Mặt khác D là trung điểm AC nên DF là đường trung bình của AKC DF // AK hay DM // AB
Suy ra M là trung điểm của BC
DF = AK (DF là đường trung bình của AKC), ta có
( do DF // BK) (1)
Mổt khác (Vì AD = DC)
Hay (vì = : Do DF // AB)
Suy ra (Do DF = AK) (2)
Từ (1) và (2) suy ra = EG // BC
Gọi giao điểm của EG và DF là O ta có OG = OE
Bài tập về nhà
Bài 1:
Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng qua O và song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F
- a) Chứng minh FE // BD
- b) Từ O kẻ các đường thẳng song song với AB, AD cắt BD, CD tại G và H.
Chứng minh: CG. DH = BG. CH
Bài 2:
Cho hình bình hành ABCD, điểm M thuộc cạnh BC, điểm N thuộc tia đối của tia BC sao cho BN = CM; các đường thẳng DN, DM cắt AB theo thứ tự tại E, F.
Chứng minh:
- a) AE2 = EB. FE
- b) EB =. EF