Hoán vị chỉnh hợp tổ hợp
Tài liệu giới thiệu sơ lược về chỉnh hợp, hoán vị và tổ hợp toán lớp 8. Tài liệu bao gồm tóm tắt lý thuyết, ví dụ minh họa có lời giải. Một số bài tập luyện tập gồm tự luận và trắc nghiệm.
Chỉnh hợp là gì
Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp k phần tử của tập hợp X ( 1 k n) theo một thứ tự nhất định gọi là một chỉnh hợp chập k của n phần tử ấy. Số tất cả các chỉnh hợp chập k của n phần tử được kí hiệu Akn
Tính số chỉnh chập k của n phần tử Akn=n(n-1)…(n-k+1)
Ví dụ: Một nhóm học cos 10 học sinh. Chọn 3 bạn xếp vào một chế ghế dài có 3 chỗ ngồi. Số cách xếp là A3 10=720(cách)
Hoán vị là gì
Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi cách sắp xếp n phần tử của tập hợp X theo một thứ tự nhất định gọi là một hoán vị của n phần tử ấy.Số tất cả các hoán vị của n phần tử được kí hiệu Pn
Tính số hoán vị của n phần tử Pn=n! ( n! : n giai thừa)
Ví dụ: Số cách xếp 5 người thành một hàng dọc là 5!=120 (cách)
Tổ hợp là gì
Định nghĩa: Cho một tập hợp X gồm n phần tử. Mỗi tập con của X gồm k phần tử trong n phần tử của tập hợp X ( 0 k n) gọi là một tổ hợp chập k của n phần tử ấy.Số tất cả các tổ hợp chập k của n phần tử được kí hiệu Ckn
Tính số tổ hợp chập k của n phần tử: Ckn=n(n-11)…(n-k+1)/k(k-1)…3.2.1
Ví dụ: Một bình đựng 10 viên bi khác nhau. Chọn ngẫu nhiên 2 viên bi trong bình. Số cách chọn là C210=45 (cách)
Bài tập về hoán vị, chỉnh hợp, tổ hợp toán lớp 8
Ví dụ 1: Cho 5 chữ số: 1, 2, 3, 4, 5.a) có bao nhiêu số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba trong các chữ số trên.b) Có bao nhiêu số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5 chữ số trên.c)Có bao nhiêu cách chọn ra ba chữ số trong 5 chữ số trên
Giải:
a) số tự nhiên có ba chữ số, các chữ số khác nhau, lập bởi ba trong các chữ số trên là chỉnh hợp chập 3 của 5 phần tử: = 5.(5 – 1).(5 – 2) = 5 . 4 . 3 = 60 số
b) số tự nhiên có 5 chữ số, các chữ số khác nhau, lập bởi cả 5 chữ số trên là hoán vị cua 5 phần tử (chỉnh hợp chập 5 của 5 phần tử):
= 5.(5 – 1).(5 – 2).(5 – 3).(5 – 4) = 5 . 4 . 3 . 2 . 1 = 120 số
c) cách chọn ra ba chữ số trong 5 chữ số trên là tổ hợp chập 3 của 5 phần tử:
= nhóm
Ví dụ 2:Cho 5 chữ số 1, 2, 3, 4, 5. Dùng 5 chữ số này:
a) Lập được bao nhiêu số tự nhiên có 4 chữ số trong đó không có chữ số nào lặp lại? Tính tổng các số lập được
b) lập được bao nhiêu số chẵn có 5 chữ số khác nhau?
c) Lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó hai chữ số kề nhau phải khác nhau
d) Lập được bao nhiêu số tự nhiên có 4 chữ số, các chữ số khác nhau, trong đó có hai chữ số lẻ, hai chữ số chẵn
Giải
a) số tự nhiên có 4 chữ số, các chữ số khác nhau, lập bởi 4 trong các chữ số trên là chỉnh hợp chập 4 của 5 phần tử: = 5.(5 – 1).(5 – 2).(5 – 3) = 5 . 4 . 3 . 2 = 120 số
Trong mỗi hang (Nghìn, trăm, chục, đơn vị), mỗi chữ số có mặt: 120 : 5 = 24 lần
Tổng các chữ số ở mỗi hang: (1 + 2 + 3 + 4 + 5). 24 = 15 . 24 = 360
Tổng các số được lập: 360 + 3600 + 36000 + 360000 = 399960
- b) chữ số tận cùng có 2 cách chọn (là 2 hoặc 4)
bốn chữ số trước là hoán vị của của 4 chữ số còn lại và có P4 = 4! = 4 . 3 . 2 = 24 cách chọn
Tất cả có 24 . 2 = 48 cách chọn
c) Các số phải lập có dạng , trong đó : a có 5 cách chọn, b có 4 cách chọn (khác a), c có 4 cách chọn (khác b), d có 4 cách chọn (khác c), e có 4 cách chọn (khác d)
Tất cả có: 5 . 4 . 4 . 4 . 4 = 1280 số
d) Chọn 2 trong 2 chữ số chẵn, có 1 cách chọn
chọn 2 trong 3 chữ số lẻ, có 3 cách chọn. Các chữ số có thể hoán vị, do đó có:
1 . 3 . 4! =1 . 3 . 4 . 3 . 2 = 72 số
- BÀI TẬP LUYỆN TẬP
Bài 1: cho 5 số: 0, 1, 2, 3, 4. từ các chữ số trên có thể lập được bao nhiêu số tự nhiên:
- a) Có 5 chữ số gồm cả 5 chữ số ấy?
- b) Có 4 chữ số, có các chữ số khác nhau?
- c) có 3 chữ số, các chữ số khác nhau?
- d) có 3 chữ số, các chữ số có thể giống nhau?
Bài tập trắc nghiệm hoán vị, chỉnh hợp, tổ hợp
Câu 1:Số cách xếp n () học sinh thành một hàng ngang là?
A.. A.2n. A.. A.n.
Câu :Từ các chữ số có thể lập được bao nhiêu số tự nhiên có 4 chữ số phân biệt?
A.24. A.256. A.14. A.16.
Câu2 :Số cách xếp 6 học sinh thành một hàng dọc?
A.6!. A.66. A.6 A.36.
Câu :Ban cán sự lớp 11A có 4 bạn học sinh, hỏi có bao nhiêu cách lựa chọn 1 bạn làm lớp trưởng 1 bạn lớp phó 1 bạn bí thư và 1 bạn phó bí thư?( 4 bạn đều có khả năng như nhau)A.24. A.256. A.16. A.8.
Câu3 :Cho tập hợp gồm phần tử. Số các hoán vị của phần tử của tập hợp là
A.. A.. A.. A..
Câu 4:Kết quả của phép tính : A.. A.. A.. A..
Câu 5:Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau:
A.24. A.1. A.42. A.256.
Câu 6:Từ các chữ số ; ; có thể lập được bao nhiêu số tự nhiên có chữ số khác nhau đôi một?
A.. A.. A.. A..
Câu7 :Từ các số , , , , có thể lập được bao nhiêu số tự nhiên có chữ số khác nhau đôi một?
A.. A.. A.. A..
Câu8 :Kí hiệu là số các chỉnh hợp chập của phần tử . Mệnh đề nào sau đây đúng?
A.. A.. A.. A..
Câu 9:Tính số chỉnh hợp chập của phần tử?A..A.. A.. A..
Câu 3:Kết quả của phép tính là:A.210. A.35. A.21. A.37.
Câu10 :Khẳng định nào sau đây đúng ?A.. A.. A.. A..
Câu11 :Từ các chữ số 1;2;3;4 có bao nhiêu số tự nhiên có 2 chữ số khác nhau được lập từ các chữ số trên.A.12. A.4. A.24. A.7.
Câu12 :Một nhóm có 7 thành viên, cần chọn ra hai người trong đó 1 nhóm trưởng , 1 nhóm phó. Hỏi có tất cả bao nhiêu cách chọn?A.42. A.49. A.36. A.14.
Câu713:Có bao nhiêu cách xếp khác nhau cho 6 người ngồi vào 4 chỗ trên một bàn dài?
A.360. A.15 A.720. A.24.
Câu 14:Công thức tính số tổ hợp chập của phần tử là:A.. A.. A.. A..
Câu 15:Kết quả của phép tính là:A.45. A.90. A.20. A.100.
Câu 16:Khẳng định nào sau đây đúng?A. . A.. A.. A..
Câu17 :Số cách chọn 3 người trong một tổ có 7 người là:
A.. A.. A.7!. A.3!.
Câu18 :Cho tập A={a,b,c,d} có bao nhiêu tập con có ba phần tử của tập A ?A.4. A.24. A.5. A.16.
Câu 19Để chuẩn bị cho buổi học thể dục giáo viên thể dục yêu cầu 4 học sinh bất kỳ trong 45 học sinh của lớp 11A đi lấy nệm nhảy cao. Hỏi giáo viên thể dục có bao nhiêu cách chọn?
A.148995. A.3575880. A.45! A.4!45!.
Câu 20:Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
A.20. A.15. A.120. A.60.
Hoán vị chỉnh hợp tổ hợp-Xem chi tiết nội dung và tải về
HOÁN VỊ, CHỈNH HỢP, TỔ HỢP.docx